Browse by author
Lookup NU author(s): Peng Zhang, Dr Jie ZhangORCiD, Dr Bingzhang Hu, Dr Yang Long
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Batch processes are important manufacturing route for the agile manufacturing of high value added products and they are typically difficult to control due to highly non-linear characteristic, unknown disturbance and model plant mismatches. Neural networks and traditional reinforcement learning have been applied to control and optimize batch processes. However, they usually lack robustness and accuracy leading to unsatisfactory performance. To overcome these problems, this paper proposes a stochastic multi-step action Q-learning algorithm (SMSA) based on multiple step action Q-learning (MSA). In MSA, the action space is divided into some same time steps, which means that some non-optimal actions will be continuously and compulsively applied in a long time and the speed of learning might be slow. Compared with MSA, the modification of SMSA is that several time steps are different and a modified greedy algorithm is used to improve the speed, efficiency and flexibility of algorithm. The proposed method is applied to a simulated fed-batch process and it gives better optimization control performance than other control strategies.
Author(s): Zhang P, Zhang J, Hu B, Long Y
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: IEEE Conference on Control Technology and Applications (CCTA 2019)
Year of Conference: 2019
Pages: 314-319
Online publication date: 05/12/2019
Acceptance date: 30/04/2019
Publisher: IEEE
URL: https://doi.org/10.1109/CCTA.2019.8920472
DOI: 10.1109/CCTA.2019.8920472
Library holdings: Search Newcastle University Library for this item
ISBN: 9781728127675