Toggle Main Menu Toggle Search

Open Access padlockePrints

POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern

Lookup NU author(s): Dr Katherine JohnsonORCiD, Dr Ana TopfORCiD, Professor Volker StraubORCiD

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

© 2020, Springer-Verlag GmbH Germany, part of Springer Nature. Protein O-glucosyltransferase 1 (POGLUT1) activity is critical for the Notch signaling pathway, being one of the main enzymes responsible for the glycosylation of the extracellular domain of Notch receptors. A biallelic mutation in the POGLUT1 gene has been reported in one family as the cause of an adult-onset limb-girdle muscular dystrophy (LGMD R21; OMIM# 617232). As the result of a collaborative international effort, we have identified the first cohort of 15 patients with LGMD R21, from nine unrelated families coming from different countries, providing a reliable phenotype–genotype and mechanistic insight. Patients carrying novel mutations in POGLUT1 all displayed a clinical picture of limb-girdle muscle weakness. However, the age at onset was broadened from adult to congenital and infantile onset. Moreover, we now report that the unique muscle imaging pattern of “inside-to-outside” fatty degeneration observed in the original cases is indeed a defining feature of POGLUT1 muscular dystrophy. Experiments on muscle biopsies from patients revealed a remarkable and consistent decrease in the level of the NOTCH1 intracellular domain, reduction of the pool of satellite cells (SC), and evidence of α-dystroglycan hypoglycosylation. In vitro biochemical and cell-based assays suggested a pathogenic role of the novel POGLUT1 mutations, leading to reduced enzymatic activity and/or protein stability. The association between the POGLUT1 variants and the muscular phenotype was established by in vivo experiments analyzing the indirect flight muscle development in transgenic Drosophila, showing that the human POGLUT1 mutations reduced its myogenic activity. In line with the well-known role of the Notch pathway in the homeostasis of SC and muscle regeneration, SC-derived myoblasts from patients’ muscle samples showed decreased proliferation and facilitated differentiation. Together, these observations suggest that alterations in SC biology caused by reduced Notch1 signaling result in muscular dystrophy in LGMD R21 patients, likely with additional contribution from α-dystroglycan hypoglycosylation. This study settles the muscular clinical phenotype linked to POGLUT1 mutations and establishes the pathogenic mechanism underlying this muscle disorder. The description of a specific imaging pattern of fatty degeneration and muscle pathology with a decrease of α-dystroglycan glycosylation provides excellent tools which will help diagnose and follow up LGMD R21 patients.


Publication metadata

Author(s): Servian-Morilla E, Cabrera-Serrano M, Johnson K, Pandey A, Ito A, Rivas E, Chamova T, Muelas N, Mongini T, Nafissi S, Claeys KG, Grewal RP, Takeuchi M, Hao H, Bonnemann C, Lopes Abath Neto O, Medne L, Brandsema J, Topf A, Taneva A, Vilchez JJ, Tournev I, Haltiwanger RS, Takeuchi H, Jafar-Nejad H, Straub V, Paradas C

Publication type: Article

Publication status: Published

Journal: Acta Neuropathologica

Year: 2020

Volume: 139

Pages: 565-582

Print publication date: 01/03/2020

Online publication date: 03/01/2020

Acceptance date: 18/12/2019

ISSN (print): 0001-6322

ISSN (electronic): 1432-0533

Publisher: Springer Nature

URL: https://doi.org/10.1007/s00401-019-02117-6

DOI: 10.1007/s00401-019-02117-6


Altmetrics

Altmetrics provided by Altmetric


Share