Toggle Main Menu Toggle Search

Open Access padlockePrints

An experimental study of the putative mechanism of a synthetic autoomous rotary DNA nanomotor

Lookup NU author(s): Dr Adam WollmanORCiD

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

© 2017 The Authors. DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.


Publication metadata

Author(s): Dunn KE, Leake MC, Wollman AJM, Trefzer MA, Johnson S, Tyrrell AM

Publication type: Article

Publication status: Published

Journal: Royal Society Open Science

Year: 2017

Volume: 4

Issue: 3

Online publication date: 22/03/2017

Acceptance date: 23/02/2017

Date deposited: 10/02/2020

ISSN (electronic): 2054-5703

Publisher: The Royal Society Publishing

URL: https://doi.org/10.1098/rsos.160767

DOI: 10.1098/rsos.160767


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
EP/K040820/1
MR/K01580X/1

Share