Toggle Main Menu Toggle Search

Open Access padlockePrints

Gold Nanoparticle-Dynamic Light Scattering Tandem for The Rapid and Quantitative Detection of Let7 MicroRNA Family

Lookup NU author(s): Professor Yen Nee Tan

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

The discovery of miRNAs as key regulators of the cellular machinery and their implication in diseases has blossomed research in miRNA detection. Conventional techniques such as quantitative reverse transcriptase polymerase chain reaction (qRT–PCR), northern blotting and microarray technologies have contributed significantly to the detection of miRNAs. But, areas of unmet need remained and emerging nanotechnology platforms have the potential to make the biosensing process simpler while maintaining good sensitivity and selectivity. To this effect, a gold nanoparticle (AuNP) scattering technique is presented, which shows the controlled formation of defined nanoassemblies through the hybridization of uniquely designed AuNP probes to its targeted miRNA. The defined assemblies exhibit a distinct size shift that can be detected through dynamic light scattering (DLS). Thus, instead of using DLS as a characterization tool as it is conventionally used for, herein, its potential use is demonstrated as a bioanalytical system. Using the let7 family miRNA, which associates with increasingly many medical conditions, as the model of study, we are able to achieve a limit of detection of 100 fmol and a selectivity discriminating close members of the let7 family. Potentially, detection can be done in 5 min, which also makes this a rapid detection system.


Publication metadata

Author(s): Seow N, Tan YN, Yung LL

Publication type: Article

Publication status: Published

Journal: Particle and Particle Systems Characterization

Year: 2014

Volume: 31

Issue: 12

Pages: 1260-1268

Print publication date: 18/12/2014

Online publication date: 25/09/2014

Acceptance date: 25/09/2014

ISSN (print): 0934-0866

ISSN (electronic): 1521-4117

Publisher: Wiley - VCH Verlag GmbH & Co. KGaA

URL: https://doi.org/10.1002/ppsc.201400158

DOI: 10.1002/ppsc.201400158


Altmetrics

Altmetrics provided by Altmetric


Share