Browse by author
Lookup NU author(s): Carolina Ospina Betancourth, Dr Kishor AcharyaORCiD, Dr Ben Allen, Jim Entwistle, Professor Ian Head, Professor Thomas CurtisORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Copyright © 2020 American Chemical Society.Anthropogenic nitrogen fixation is essential to sustain a global population of 7.7 billion. However, there has been a long-standing desire to find cheaper and more environmentally friendly alternatives to the Haber-Bosch process. In this study, we developed a new strategy of nitrogen fixation by enriching free-living N2-fixing bacteria (NFB) in reactors fed with low nitrogen wastewater, analogous to those usually found in certain industrial effluents such as paper mills. Our reactors fixed appreciable quantities of nitrogen with a rate of 11.8 mg N L-1 day-1. This rate is comparable to recent "breakthrough" nitrogen-fixing technologies and far higher than observed in low C/N reactors (fed with organic matter and nitrogen). NFB were quantified using quantitative polymerase chain reaction (qPCR) of the nifH (marker gene used to identify biological nitrogen fixation) and 16S rRNA genes. The nifH gene was enriched by a factor of 10 in the nitrogen-fixing reactors (compared to controls) attaining 13% of the bacterial population (1:4.2 copies of nifH to 16S rRNA). The Illumina MiSeq 16S rRNA gene amplicon sequencing of reactors showed that the microbial community was dominated (19%) by Clostridium pasteurianum. We envisage that nitrogen-enriched biomass could potentially be used as a biofertilizer and that the treated wastewater could be released to the environment with very little post-treatment.
Author(s): Ospina-Betancourth C, Acharya K, Allen B, Entwistle J, Head IM, Sanabria J, Curtis TP
Publication type: Article
Publication status: Published
Journal: Environmental Science and Technology
Year: 2020
Volume: 54
Issue: 6
Pages: 3539-3548
Print publication date: 17/03/2020
Online publication date: 21/02/2020
Acceptance date: 21/02/2020
Date deposited: 05/05/2020
ISSN (print): 0013-936X
ISSN (electronic): 1520-5851
Publisher: American Chemical Society
URL: https://doi.org/10.1021/acs.est.9b05322
DOI: 10.1021/acs.est.9b05322
PubMed id: 32083474
Altmetrics provided by Altmetric