Browse by author
Lookup NU author(s): Dr Milan Mijajlovic
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Adsorption of peptides at the interface between a fluid and a solid occurs widely in both nature and applications. Knowing the dominant conformations of adsorbed peptides and the energy barriers between them is of interest for a variety of reasons. Molecular dynamics (MD) simulation is a widely used technique that can yield such understanding. However, the complexity of the energy landscapes of adsorbed peptides means that comprehensive exploration of the energy landscape by MD simulation is challenging. An alternative approach is energy landscape mapping (ELM), which involves the location of stationary points on the potential energy surface, and its analysis to determine, for example, the pathways and energy barriers between them. In the study reported here, a comparison is made between this technique and replica exchange molecular dynamics (REMD) for met-enkephalin adsorbed at the interface between graphite and the gas phase: the first ever direct comparison of these techniques for adsorbed peptides. Both methods yield the dominant adsorbed peptide conformations. Unlike REMD, however, ELM readily allows the identification of the connectivity and energy barriers between the favored conformations, transition paths, and structures between these conformations and the impact of entropy. It also permits the calculation of the constant volume heat capacity although the accuracy of this is limited by the sampling of high-energy minima. Overall, compared to REMD, ELM provides additional insights into the adsorbed peptide system provided sufficient care is taken to ensure that key parts of the landscape are adequately sampled.
Author(s): Ross-Naylor JA, Mijajlovic M, Biggs MJ
Publication type: Article
Publication status: Published
Journal: Journal of Physical Chemistry B
Year: 2020
Volume: 124
Issue: 13
Pages: 2527-2538
Print publication date: 02/04/2020
Online publication date: 11/03/2020
Acceptance date: 02/04/2018
ISSN (print): 1520-6106
ISSN (electronic): 1520-5207
Publisher: American Chemical Society
URL: https://doi.org/10.1021/acs.jpcb.9b10568
DOI: 10.1021/acs.jpcb.9b10568
PubMed id: 32156114
Altmetrics provided by Altmetric