Browse by author
Lookup NU author(s): Dr Changhao Zhu, Dr Jie ZhangORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Deep belief network (DBN) has recently emerged as a powerful tool in building nonlinear data driven models. However, a single DBN model can still lack reliability especially when the amount of data available for modelling is limited. This paper proposes a bootstrap aggregated deep belief network (BAGDBN) to improve model reliability and robustness. In the proposed method, bootstrap re-sampling with replacement is applied to the original modelling data to generate multiple replications. A DBN model is developed on each replication of the original modelling data. These individual DBN models are then combined to form a BAGDBN model. The proposed method is demonstrated on two application examples, modelling of a conic water tank and inferential estimation of polymer melt index in an industrial polypropylene polymerization process. The application results demonstrate that the proposed BAGDBN models can give more reliable estimation and prediction than single DBN models.
Author(s): Zhu C, Zhang J
Publication type: Article
Publication status: Published
Journal: AIMS Electronic and Electrical Engineering
Year: 2020
Volume: 4
Issue: 3
Pages: 287–302
Print publication date: 13/07/2020
Online publication date: 13/07/2020
Acceptance date: 30/06/2020
Date deposited: 10/08/2020
ISSN (electronic): 2578-1588
Publisher: AIMS Press
URL: https://doi.org/10.3934/ElectrEng.2020.3.287
DOI: 10.3934/ElectrEng.2020.3.287
Altmetrics provided by Altmetric