Toggle Main Menu Toggle Search

Open Access padlockePrints

Influence of Isolation on the Recovery of Pond Mesocosms from the Application of an Insectide. II. Benthic Macroinvertibrates

Lookup NU author(s): Professor David GrahamORCiD

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

The immediate response and recovery of the macrobenthic communities of nonisolated and isolated freshwater outdoor 9 m3 mesocosms following an acute stress caused by the addition of deltamethrin were studied over a 14-month period. To discriminate between internal and external recovery mechanisms, half of the treated ponds were covered by 1-mm mesh lids that restricted aerial recolonization. Both structural (abundance of the different taxonomic groups) and functional (litter breakdown) parameters were monitored. Insects were broadly reduced in numbers by deltamethrin addition. In general, noninsect groups were not affected or increased in abundance in deltamethrin-treated ponds, probably because of relative insensitivity to deltamethrin, reduced predation, and lower competition for food. No major change in litter breakdown rates were seen, probably because of functional redundancy among the macrobenthic community. Chironominae larvae recovered in open, treated mesocosms 62 d after deltamethrin addition and most insect groups recovered 84 d after the treatment date. However, the presence of lids significantly reduced insect recovery rate, suggesting that it largely depends on the immigration of winged forms (i.e., external recovery) from surrounding non- or less affected systems. These results indicate that the recovery time of macrobenthic communities in an affected natural pond would depend on spatial characteristics of the landscape and also the season that exposure occurs. Isolated ecosystems would display posttreatment insect recovery dynamics very different from highly connected ones, evolving toward alternate pseudoequilibrium states, possibly with lower biodiversity but with preserved functionality. Consequences for higher tier risk assessment of pesticides are discussed.


Publication metadata

Author(s): Caquet T, Hanson ML, Roucaute M, Graham DW, Lagadic L

Publication type: Article

Publication status: Published

Journal: Environmental Toxicology & Chemistry

Year: 2007

Volume: 26

Issue: 6

Pages: 1280-1290

Print publication date: 01/06/2007

ISSN (print): 0730-7268

ISSN (electronic): 1552-8618

Publisher: Society of Environmental Toxicology and Chemistry

URL: http://dx.doi.org/10.1897/06-250R.1

DOI: 10.1897/06-250R.1


Altmetrics

Altmetrics provided by Altmetric


Share