Browse by author
Lookup NU author(s): Professor Pip MooreORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
© 2020, The Author(s). Prolonged high-temperature extreme events in the ocean, marine heatwaves, can have severe and long-lasting impacts on marine ecosystems, fisheries and associated services. This study applies a marine heatwave framework to analyse a global sea surface temperature product and identify the most extreme events, based on their intensity, duration and spatial extent. Many of these events have yet to be described in terms of their physical attributes, generation mechanisms, or ecological impacts. Our synthesis identifies commonalities between marine heatwave characteristics and seasonality, links to the El Niño-Southern Oscillation, triggering processes and impacts on ocean productivity. The most intense events preferentially occur in summer, when climatological oceanic mixed layers are shallow and winds are weak, but at a time preceding climatological maximum sea surface temperatures. Most subtropical extreme marine heatwaves were triggered by persistent atmospheric high-pressure systems and anomalously weak wind speeds, associated with increased insolation, and reduced ocean heat losses. Furthermore, the most extreme events tended to coincide with reduced chlorophyll-a concentration at low and mid-latitudes. Understanding the importance of the oceanic background state, local and remote drivers and the ocean productivity response from past events are critical steps toward improving predictions of future marine heatwaves and their impacts.
Author(s): Sen Gupta A, Thomsen M, Benthuysen JA, Hobday AJ, Oliver E, Alexander LV, Burrows MT, Donat MG, Feng M, Holbrook NJ, Perkins-Kirkpatrick S, Moore PJ, Rodrigues RR, Scannell HA, Taschetto AS, Ummenhofer CC, Wernberg T, Smale DA
Publication type: Article
Publication status: Published
Journal: Scientific Reports
Year: 2020
Volume: 10
Issue: 1
Online publication date: 09/11/2020
Acceptance date: 13/10/2020
Date deposited: 09/12/2020
ISSN (electronic): 2045-2322
Publisher: Nature Research
URL: https://doi.org/10.1038/s41598-020-75445-3
DOI: 10.1038/s41598-020-75445-3
PubMed id: 33168858
Altmetrics provided by Altmetric