Browse by author
Lookup NU author(s): Dr Christopher Hales
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© 2020 The Author(s).We describe the first results on weak gravitational lensing from the SuperCLASS survey: the first survey specifically designed to measure the weak lensing effect in radio-wavelength data, both alone and in cross-correlation with optical data. We analyse 1.53 deg2 of optical data from the Subaru telescope and 0.26 deg2 of radio data from the e-MERLIN and VLA telescopes (the DR1 data set). Using standard methodologies on the optical data only we make a significant (10σ ) detection of the weak lensing signal (a shear power spectrum) due to the massive supercluster of galaxies in the targeted region. For the radio data we develop a new method to measure the shapes of galaxies from the interferometric data, and we construct a simulation pipeline to validate this method. We then apply this analysis to our radio observations, treating the e-MERLIN and VLA data independently. We achieve source densities of 0.5 arcmin−2 in the VLA data and 0.06 arcmin−2 in the e-MERLIN data, numbers which prove too small to allow a detection of a weak lensing signal in either the radio data alone or in cross-correlation with the optical data. Finally, we show preliminary results from a visibility-plane combination of the data from e-MERLIN and VLA which will be used for the forthcoming full SuperCLASS data release. This approach to data combination is expected to enhance both the number density of weak lensing sources available, and the fidelity with which their shapes can be measured.
Author(s): Harrison I, Brown ML, Tunbridge B, Thomas DB, Hillier T, Thomson AP, Whittaker L, Abdalla FB, Battye RA, Bonaldi A, Camera S, Casey CM, Demetroullas C, Hales CA, Jackson NJ, Kay ST, Manning SM, Peters A, Riseley CJ, Watson RA
Publication type: Review
Publication status: Published
Journal: Monthly Notices of the Royal Astronomical Society
Year: 2020
Volume: 495
Issue: 2
Pages: 1737-1759
Print publication date: 01/06/2020
Online publication date: 02/04/2020
Acceptance date: 01/03/2020
ISSN (print): 0035-8711
ISSN (electronic): 1365-2966
Publisher: Oxford University Press
URL: https://doi.org/10.1093/mnras/staa696
DOI: 10.1093/mnras/staa696