Browse by author
Lookup NU author(s): Dr Matthew DysonORCiD, Professor Kianoush Nazarpour
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.Understanding how upper-limb prostheses are used in daily life helps to improve the design and robustness of prosthesis control algorithms and prosthetic components. However, only a very small fraction of published research includes prosthesis use in community settings. The cost, limited battery life, and poor generalisation may be the main reasons limiting the implementation of home-based applications. In this work, we introduce the design of a cost-effective Arduino-based myoelectric control system with wearable electromyogram (EMG) sensors. The design considerations focused on home studies, so the robustness, user-friendly control adjustments, and user supports were the main concerns. Three control algorithms, namely, direct control, abstract control, and linear discriminant analysis (LDA) classification, were implemented in the system. In this paper, we will share our design principles and report the robustness of the system in continuous operation in the laboratory. In addition, we will show a first real-time implementation of the abstract decoder for prosthesis control with an able-bodied participant.
Author(s): Wu H, Dyson M, Nazarpour K
Publication type: Article
Publication status: Published
Journal: Sensors
Year: 2021
Volume: 21
Issue: 3
Pages: 1-13
Online publication date: 24/01/2021
Acceptance date: 20/01/2021
Date deposited: 08/04/2021
ISSN (electronic): 1424-8220
Publisher: MDPI AG
URL: https://doi.org/10.3390/s21030763
DOI: 10.3390/s21030763
Altmetrics provided by Altmetric