Browse by author
Lookup NU author(s): Dr Jamie Gould
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The desolvated (3,24)-connected metal-organic framework (MOF) material, MFM-160a, [Cu3(L)(H2O)3] [H6L = 1,3,5-triazine-2,4,6-tris(aminophenyl-4-isophthalic acid)], exhibits excellent high-pressure uptake of CO2 (110 wt% at 20 bar, 298 K) and highly selective separation of C2 hydrocarbons from CH4 at 1 bar pressure. Henry's law selectivities of 79:1 for C2H2:CH4 and 70:1 for C2H4:CH4 at 298 K are observed, consistent with ideal adsorption solution theory (IAST) predictions. Significantly, MFM-160a shows a selectivity of 16:1 for C2H2:CO2. Solid-state 2H NMR spectroscopic studies on partially deuterated MFM-160-d12 confirm an ultra-low barrier (∼2 kJ mol-1) to rotation of the phenyl group in the activated MOF and a rotation rate 5 orders of magnitude slower than usually observed for solid-state materials (1.4 × 106 Hz cf. 1011-1013 Hz). Upon introduction of CO2 or C2H2 into desolvated MFM-160a, this rate of rotation was found to increase with increasing gas pressure, a phenomenon attributed to the weakening of an intramolecular hydrogen bond in the triazine-containing linker upon gas binding. DFT calculations of binding energies and interactions of CO2 and C2H2 around the triazine core are entirely consistent with the 2H NMR spectroscopic observations.
Author(s): Trenholme WJF, Kolokolov DI, Bound M, Argent SP, Gould JA, Li J, Barnett SA, Blake AJ, Stepanov AG, Besley E, Easun TL, Yang S, Schroder M
Publication type: Article
Publication status: Published
Journal: Journal of the American Chemical Society
Year: 2021
Volume: 143
Issue: 9
Pages: 3348-3358
Print publication date: 10/03/2021
Online publication date: 24/02/2021
Acceptance date: 02/04/2018
ISSN (print): 0002-7863
ISSN (electronic): 1520-5126
Publisher: American Chemical Society
URL: https://doi.org/10.1021/jacs.0c11202
DOI: 10.1021/jacs.0c11202
PubMed id: 33625838
Altmetrics provided by Altmetric