Toggle Main Menu Toggle Search

Open Access padlockePrints

Gyrotactic swimmer dispersion in pipe flow: Testing the theory

Lookup NU author(s): Dr Otti CrozeORCiD


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


© 2017 Cambridge University Press.Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display non-zero drift and effective diffusivity that is non-monotonic with Péclet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, to facilitate comparison, we obtain new solutions of the axial dispersion theory accounting both for swimmer negative buoyancy and a local nonlinear response of swimmers to shear, provided by two alternative microscopic stochastic descriptions. We obtain new predictions for suspensions of the model swimming alga Dunaliella salina, whose motility and buoyant mass we parametrise using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained D. salina and provide a preliminary comparison with predictions of a non-zero drift above the mean flow for each microscopic stochastic description. Finally, we propose further experiments for a full experimental characterisation of gyrotactic dispersion measures and discuss the implications of our results for algal dispersion in industrial photobioreactors.

Publication metadata

Author(s): Croze OA, Bearon RN, Bees MA

Publication type: Article

Publication status: Published

Journal: Journal of Fluid Mechanics

Year: 2017

Volume: 816

Pages: 481-506

Online publication date: 07/03/2017

Acceptance date: 09/02/2017

ISSN (print): 0022-1120

ISSN (electronic): 1469-7645

Publisher: Cambridge University Press


DOI: 10.1017/jfm.2017.90


Altmetrics provided by Altmetric