Toggle Main Menu Toggle Search

Open Access padlockePrints

Monitoring icequakes in east antarctica with the raspberry shake

Lookup NU author(s): Dr Rupert Bainbridge


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


© 2021 Seismological Society of America. All rights reserved. We evaluate the performance of the low-cost seismic sensor Raspberry Shake (RS) to identify and monitor icequakes (which occur when glacial ice experiences brittle deformation) in extreme environments. In January 2020, three RS3D sensors were installed on a katabatic wind-scoured blue ice area (BIA) close to the Princess Elisabeth Antarctica research station in Dronning Maud Land, East Antarctica. The sensors were configured for Antarctic deployment and placed in insulated enclosures to protect them from harsh weather systems. The RS network (installed in a triangular array) performed well in the cold and with rapid air temperature change, as diurnal temperatures fluctuated from a high of 0.0°C to a minimum temperature of -15.0°C. Although battery connectivity issues in one unit limit full triangulation of seismic signals, and high background noise may mask some seismic signals, data from the RS2 unit reveals that 2936 icequakes were detected over a 10-day period. The temporal occurrence of these icequakes, combined with satellite-derived surface temperature measurements and automatic weather station data, suggest that diurnal fluctuations in solar radiation control ice surface temperature changes, driving thermal contraction of the ice. Seismic investigations like these can therefore provide information on the thermal state and ice fracture mechanics of ablation zones such as BIAs. Our work highlights the potential application of the RS (after minimal modification) in glaciated environments where equipment often needs to be portable, temporary and lightweight, and able to perform in extreme weather conditions.

Publication metadata

Author(s): Winter K, Lombardi D, Diaz-Moreno A, Bainbridge R

Publication type: Article

Publication status: Published

Journal: Seismological Research Letters

Year: 2021

Volume: 92

Issue: 5

Pages: 2736-2747

Print publication date: 01/09/2021

Online publication date: 07/04/2021

Acceptance date: 02/04/2018

ISSN (print): 0895-0695

ISSN (electronic): 1938-2057

Publisher: Seismological Society of America


DOI: 10.1785/0220200483


Altmetrics provided by Altmetric