Browse by author
Lookup NU author(s): Professor Anh Phan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
© 2021 The Authors. Published by American Chemical Society.Cellulosic aerogel from water hyacinth (WH) was synthesized to address the dual environmental issues of water hyacinth pollution and the production of a green material. Raw WH was treated with sodium hydroxide (NaOH) with microwave assistance and in combination with hydrogen peroxide (H2O2). The results from X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) showed that lignin and hemicellulose were markedly decreased after treatment, reducing from 24.02% hemicellulose and 5.67% lignin in raw WH to 8.32 and 1.92%, respectively. Cellulose aerogel from the pretreated WH had a high porosity of 98.8% with a density of 0.0162 g·cm-3 and a low thermal conductivity of 0.030 W·m-1·K-1. After modification with methyl trimethoxysilane (MTMS) to produce a highly hydrophobic material, WH aerogel exhibited high stability for oil absorption at a capacity of 43.3, 43.15, 40.40, and 41.88 (g·g-1) with diesel oil (DO), motor oil (MO), and their mixture with water (DO + W and MO + W), respectively. The adsorption remained stable after 10 cycles.
Author(s): Nguyen TTV, Tri N, Tran BA, Dao Duy T, Nguyen ST, Nguyen T-A, Phan AN, Mai Thanh P, Huynh HKP
Publication type: Article
Publication status: Published
Journal: ACS Omega
Year: 2021
Volume: 6
Issue: 40
Pages: 26130-26139
Print publication date: 12/10/2021
Online publication date: 28/09/2021
Acceptance date: 16/09/2021
Date deposited: 03/12/2021
Publisher: American Chemical Society
URL: https://doi.org/10.1021/acsomega.1c03137
DOI: 10.1021/acsomega.1c03137
Altmetrics provided by Altmetric