Browse by author
Lookup NU author(s): Dr Michael GraylingORCiD, Professor James WasonORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
© 2021, The Author(s).Background: Composite responder endpoints feature frequently in rheumatology due to the multifaceted nature of many of these conditions. Current analysis methods used to analyse these endpoints discard much of the data used to classify patients as responders and are therefore highly inefficient, resulting in low power. We highlight a novel augmented methodology that uses more of the information available to improve the precision of reported treatment effects. Since these methods are more challenging to implement, we developed free, user-friendly software available in a web-based interface and as R packages. The software consists of two programs: one that supports the analysis of responder endpoints; the second that facilitates sample size estimation. We demonstrate the use of the software to conduct the analysis with both the augmented and standard analysis method using the MUSE study, a phase IIb trial in patients with systemic lupus erythematosus. Results: The software outputs similar point estimates with smaller confidence intervals for the odds ratio, risk ratio and risk difference estimators using the augmented approach. The sample size required in each arm for a future trial using the novel approach based on the MUSE data is 50 versus 135 for the standard method, translating to a reduction in required sample size of approximately 63%. Conclusions: We encourage trialists to use the software demonstrated to implement the augmented methodology in future studies to improve efficiency.
Author(s): McMenamin M, Grayling MJ, Berglind A, Wason JMS
Publication type: Article
Publication status: Published
Journal: BMC Rheumatology
Year: 2021
Volume: 5
Issue: 1
Online publication date: 07/12/2021
Acceptance date: 16/08/2021
Date deposited: 10/01/2022
ISSN (electronic): 2520-1026
Publisher: BioMed Central Ltd
URL: https://doi.org/10.1186/s41927-021-00224-0
DOI: 10.1186/s41927-021-00224-0
Altmetrics provided by Altmetric