Toggle Main Menu Toggle Search

Open Access padlockePrints

A Statistical Approach to Surface Metrology for 3D-Printed Stainless Steel

Lookup NU author(s): Professor Chris Oates, Liam Fleming

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. Surface metrology is the area of engineering concerned with the study of geometric variation in surfaces. This article explores the potential for modern techniques from spatial statistics to act as generative models for geometric variation in 3D-printed stainless steel. The complex macro-scale geometries of 3D-printed components pose a challenge that is not present in traditional surface metrology, as the training data and test data need not be defined on the same manifold. Strikingly, a covariance function defined in terms of geodesic distance on one manifold can fail to satisfy positive-definiteness and thus fail to be a valid covariance function in the context of a different manifold; this hinders the use of standard techniques that aim to learn a covariance function from a training dataset. On the other hand, the associated covariance differential operators are locally defined. This article proposes to perform inference for such differential operators, facilitating generalization from the manifold of a training dataset to the manifold of a test dataset. The approach is assessed in the context of model selection and explored in detail in the context of a finite element model for 3D-printed stainless steel.


Publication metadata

Author(s): Oates CJ, Kendall WS, Fleming L

Publication type: Article

Publication status: Published

Journal: Technometrics

Year: 2022

Volume: 0

Issue: 0

Pages: 1-14

Online publication date: 10/01/2022

Acceptance date: 16/11/2021

Date deposited: 01/02/2022

ISSN (print): 0040-1706

ISSN (electronic): 1537-2723

Publisher: American Statistical Association

URL: https://doi.org/10.1080/00401706.2021.2009034

DOI: 10.1080/00401706.2021.2009034


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
EP/N510129/1
EP/K031066/1

Share