Browse by author
Lookup NU author(s): Dr Priscila MeloORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of bone substitutes combining biomaterials, cells, and other factors, is considered a potential alternative to conventional treatments. Innovative scaffolds need to be tested in in vitro systems where the simultaneous presence of osteoblasts (OBs) and osteoclasts (OCs), the two main players of bone remodeling, is required to mimic their crosstalk and molecular cooperation. To this aim, two composite materials were developed, based on type I collagen, and containing either strontium-enriched mesoporous bioactive glasses or rod-like hydroxyapatite nanoparticles. The developed nanostructured systems underwent genipin chemical crosslinking and were then tested with an indirect co-culture of human trabecular bone-derived OBs and buffy coat-derived OC precursors, for 2–3 weeks. The favorable structural and biological properties of the materials proved to successfully support the viability, adhesion, and differentiation of cells, encouraging a further investigation of the developed bioactive systems as biomaterial inks for the 3D printing of more complex scaffolds for BTE.
Author(s): Borciani G, Montalbano G, Melo P, Baldini N, Ciapetti G, Vitale Brovarone C
Publication type: Article
Publication status: Published
Journal: Cells
Year: 2022
Volume: 11
Issue: 1
Online publication date: 23/12/2021
Acceptance date: 14/12/2021
Date deposited: 15/02/2022
ISSN (electronic): 2073-4409
Publisher: MDPI
URL: https://doi.org/10.3390/cells11010026
DOI: 10.3390/cells11010026
Altmetrics provided by Altmetric