Toggle Main Menu Toggle Search

Open Access padlockePrints

Harnessing nonadiabatic excitations promoted by a quantum critical point: Quantum battery and spin squeezing

Lookup NU author(s): Dr Obinna AbahORCiD



This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Crossing a quantum critical point in finite time challenges the adiabatic condition due to the closing of the energy gap, which ultimately results in the formation of excitations. Such nonadiabatic excitations are typically deemed detrimental in many scenarios, and consequently several strategies have been put forward to circumvent their formation. Here, however, we show how these nonadiabatic excitations—originated from the failure to meet the adiabatic condition due to the presence of a quantum critical point—can be controlled and thus harnessed to perform certain tasks advantageously. We focus on closed cycles reaching the quantum critical point of fully connected models analyzing two examples. First, a quantum battery that is loaded by approaching a quantum critical point, whose stored and extractable work increases exponentially via repeating cycles. Second, a scheme for the fast preparation of spin squeezed states containing multipartite entanglement that offer a metrological advantage, analogous to a two-axis twisting scheme. The corresponding figure of merit in both examples crucially depends on the universal critical exponents and the scaling of the protocol in the vicinity of the transition. Our results highlight the rich interplay between quantum thermodynamics and metrology with critical nonequilibrium dynamics.

Publication metadata

Author(s): Abah O, De Chiara G, Paternostro M, Puebla R

Publication type: Article

Publication status: Published

Journal: Physical Review Research

Year: 2022

Volume: 4

Issue: 2

Online publication date: 22/04/2022

Acceptance date: 11/03/2022

Date deposited: 30/05/2022

ISSN (electronic): 2643-1564

Publisher: American Physical Society


DOI: 10.1103/PhysRevResearch.4.L022017


Altmetrics provided by Altmetric


Funder referenceFunder name