Toggle Main Menu Toggle Search

Open Access padlockePrints

Andersen-Tawil syndrome: deep phenotyping reveals significant cardiac and neuromuscular morbidity

Lookup NU author(s): Dr Chiara Marini Bettolo, Professor Michael Hanna, Emma Matthews

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

© The Author(s) 2022. Andersen-Tawil syndrome is a neurological channelopathy caused by mutations in the KCNJ2 gene that encodes the ubiquitously expressed Kir2.1 potassium channel. The syndrome is characterized by episodic weakness, cardiac arrythmias and dysmorphic features. However, the full extent of the multisystem phenotype is not well described. In-depth, multisystem phenotyping is required to inform diagnosis and guide management. We report our findings following deep multimodal phenotyping across all systems in a large case series of 69 total patients, with comprehensive data for 52. As a national referral centre, we assessed point prevalence and showed it is higher than previously reported, at 0.105 per 100 000 population in England. While the classical phenotype of episodic weakness is recognized, we found that a quarter of our cohort have fixed myopathy and 13.5% required a wheelchair or gait aid. We identified frequent fat accumulation on MRI and tubular aggregates on muscle biopsy, emphasizing the active myopathic process underpinning the potential for severe neuromuscular disability. Long exercise testing was not reliable in predicting neuromuscular symptoms. A normal long exercise test was seen in five patients, of whom four had episodic weakness. Sixty-seven per cent of patients treated with acetazolamide reported a good neuromuscular response. Thirteen per cent of the cohort required cardiac defibrillator or pacemaker insertion. An additional 23% reported syncope. Baseline electrocardiograms were not helpful in stratifying cardiac risk, but Holter monitoring was. A subset of patients had no cardiac symptoms, but had abnormal Holter monitor recordings which prompted medication treatment. We describe the utility of loop recorders to guide management in two such asymptomatic patients. Micrognathia was the most commonly reported skeletal feature; however, 8% of patients did not have dysmorphic features and one-third of patients had only mild dysmorphic features. We describe novel phenotypic features including abnormal echocardiogram in nine patients, prominent pain, fatigue and fasciculations. Five patients exhibited executive dysfunction and slowed processing which may be linked to central expression of KCNJ2. We report eight new KCNJ2 variants with in vitro functional data. Our series illustrates that Andersen-Tawil syndrome is not benign. We report marked neuromuscular morbidity and cardiac risk with multisystem involvement. Our key recommendations include proactive genetic screening of all family members of a proband. This is required, given the risk of cardiac arrhythmias among asymptomatic individuals, and a significant subset of Andersen-Tawil syndrome patients have no (or few) dysmorphic features or negative long exercise test. We discuss recommendations for increased cardiac surveillance and neuropsychometry testing.


Publication metadata

Author(s): Vivekanandam V, Mannikko R, Skorupinska I, Germain L, Gray B, Wedderburn S, Kozyra D, Sud R, James N, Holmes S, Savvatis K, Fialho D, Merve A, Pattni J, Farrugia M, Behr ER, Marini-Bettolo C, Hanna MG, Matthews E

Publication type: Article

Publication status: Published

Journal: Brain

Year: 2022

Volume: 145

Issue: 6

Pages: 2108-2120

Print publication date: 01/06/2022

Online publication date: 17/12/2021

Acceptance date: 13/12/2021

ISSN (print): 0006-8950

ISSN (electronic): 1460-2156

Publisher: Oxford University Press

URL: https://doi.org/10.1093/brain/awab445

DOI: 10.1093/brain/awab445

PubMed id: 34919635


Altmetrics

Altmetrics provided by Altmetric


Share