Browse by author
Lookup NU author(s): Professor Bethan DaviesORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse data for glacier classification, morphology, area, length or altitude. This paper firstly classifies the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island in 2009 AD. Secondly, this paper documents glacier change 1988-2009. In 2009, the glacierised area was 8140±262 km2. From 1988-2001, 90% of glaciers receded, and from 2001-2009, 79% receded. This equates to an area change of ĝ̂'4.4% for Trinity Peninsula eastern coast glaciers, ĝ̂'0.6% for western coast glaciers, and ĝ̂'35.0% for ice-shelf tributary glaciers from 1988-2001. Tidewater glaciers on the drier, cooler eastern Trinity Peninsula experienced fastest shrinkage from 1988-2001, with limited frontal change after 2001. Glaciers on the western Trinity Peninsula shrank less than those on the east. Land-terminating glaciers on James Ross Island shrank fastest in the period 1988-2001. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula, with warming temperatures affecting the precipitation-starved glaciers on the eastern coast more than on the western coast. Reduced shrinkage on the western Peninsula may be a result of higher snowfall, perhaps in conjunction with the fact that these glaciers are mostly grounded. Rates of area loss on the eastern side of Trinity Peninsula are slowing, which we attribute to the floating ice tongues receding into the fjords and reaching a new dynamic equilibrium. The rapid shrinkage of tidewater glaciers on James Ross Island is likely to continue because of their low elevations and flat profiles. In contrast, the higher and steeper tidewater glaciers on the eastern Antarctic Peninsula will attain more stable frontal positions after low-lying ablation areas are removed, reaching equilibrium more quickly. © Author(s) 2012.
Author(s): Davies BJ, Carrivick JL, Glasser NF, Hambrey MJ, Smellie JL
Publication type: Article
Publication status: Published
Journal: Cryosphere
Year: 2012
Volume: 6
Issue: 5
Pages: 1031-1048
Online publication date: 21/09/2012
ISSN (print): 1994-0416
ISSN (electronic): 1994-0424
Publisher: Copernicus GmbH
URL: https://doi.org/10.5194/tc-6-1031-2012
DOI: 10.5194/tc-6-1031-2012
Altmetrics provided by Altmetric