Browse by author
Lookup NU author(s): Professor Giorgio TascaORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© 2016 American Society of Human GeneticsTubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration.
Author(s): Sferra A, Baillat G, Rizza T, Barresi S, Flex E, Tasca G, D'Amico A, Bellacchio E, Ciolfi A, Caputo V, Cecchetti S, Torella A, Zanni G, Diodato D, Piermarini E, Niceta M, Coppola A, Tedeschi E, Martinelli D, Dionisi-Vici C, Nigro V, Dallapiccola B, Compagnucci C, Tartaglia M, Haase G, Bertini E
Publication type: Article
Publication status: Published
Journal: American Journal of Human Genetics
Year: 2016
Volume: 99
Issue: 4
Pages: 974-983
Print publication date: 12/10/2016
Online publication date: 22/09/2016
Acceptance date: 09/08/2016
ISSN (print): 0002-9297
ISSN (electronic): 1537-6605
Publisher: Cell Press
URL: https://doi.org/10.1016/j.ajhg.2016.08.006
DOI: 10.1016/j.ajhg.2016.08.006
PubMed id: 27666369
Altmetrics provided by Altmetric