Toggle Main Menu Toggle Search

Open Access padlockePrints

Enhanced Bayesian Factorization With Variant Scale Partitioning for Multivariate Time Series Analysis

Lookup NU author(s): Professor Raj Ranjan


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


© 1989-2012 IEEE.Multivariate time series data (Mv-TSD) portray the evolving processes of the system(s) under examination in a 'multi-view' manner. Factorization methods are salient for Mv-TSD analysis with the potentials of structural feature construction correlating various data attributes. However, research challenges remain in the derivation of factors due to highly scattered data distribution of Mv-TSD and intensive interferences/outliers embedded in the source data. The proposed Enhanced Bayesian Factorization approach (Enhanced-BF) addresses the challenges in three phases: (1) variant scale partitioning applies to Mv-TSD according to degree of amplitude and obtains the blocks of variant scales; (2) hierarchical Bayesian model for tensor factorization automatically derives the factors of each block with interferences suppressed; (3) Bayesian unification model merges those block factors to construct the final structural features. Enhanced-BF has been evaluated using a case study of brain data engineering with multivariate electroencephalogram (EEG). Experimental results indicate that the proposed method manifests robustness to the interferences and outperforms the counterparts in terms of operation efficiency and error when factorizing EEG tensor. Besides, Enhanced-BF excels in factorization-based analysis of ongoing autism spectrum disorder (ASD) EEG: 3 times speed-up in factorization and 87.35% accuracy in ASD discrimination. The latent factors ('biomarkers') can distinctly interpret the typical EEG characteristics of ASD subjects.

Publication metadata

Author(s): Tang Y, Chen D, Zuo Y, Lu X, Ranjan R, Zomaya AY, Yao Q, Li X

Publication type: Article

Publication status: Published

Journal: IEEE Transactions on Knowledge and Data Engineering

Year: 2023

Volume: 35

Issue: 4

Pages: 3832-3845

Print publication date: 01/04/2023

Online publication date: 17/11/2021

Acceptance date: 02/04/2021

ISSN (print): 1041-4347

ISSN (electronic): 1558-2191

Publisher: IEEE Computer Society


DOI: 10.1109/TKDE.2021.3128770


Altmetrics provided by Altmetric