Browse by author
Lookup NU author(s): Dr Pankaj Singla, Sarbjeet Kaur, Dr Ollie Jamieson, Amy Dann, Saweta Garg, Clare Mahon, Professor Marloes PeetersORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Lysozyme (LYZ) is a small cationic protein which is widely used for medical treatment and in the food industry to act as an anti-bacterial agent; however, it can trigger allergic reactions. In this study, high-affinity molecularly imprinted nanoparticles (nanoMIPs) were synthesized for LYZ using a solid-phase approach. The produced nanoMIPs were electrografted to screen-printed electrodes (SPEs), disposable electrodes with high commercial potential, to enable electrochemical and thermal sensing. Electrochemical impedance spectroscopy (EIS) facilitated fast measurement (5–10 min) and is able to determine trace levels of LYZ (pM) and can discriminate between LYZ and structurally similar proteins (bovine serum albumin, troponin-I). In tandem, thermal analysis was conducted with the heat transfer method (HTM), which is based on monitoring the heat transfer resistance at the solid–liquid interface of the functionalized SPE. HTM as detection technique guaranteed trace-level (fM) detection of LYZ but needed longer analysis time compared to EIS measurement (30 min vs 5–10 min). Considering the versatility of the nanoMIPs which can be adapted to virtually any target of interest, these low-cost point-of-care sensors hold great potential to improve food safety.
Author(s): Singla P, Kaur S, Jamieson O, Dann A, Garg S, Mahon C, Crapnell R, Banks C, Kaur I, Peeters M
Publication type: Article
Publication status: Published
Journal: Analytical and Bioanalytical Chemistry
Year: 2023
Volume: 415
Pages: 4467–4478
Print publication date: 11/03/2023
Online publication date: 11/03/2023
Acceptance date: 25/02/2023
Date deposited: 18/04/2023
ISSN (print): 1618-2642
ISSN (electronic): 1618-2650
Publisher: Springer
URL: https://doi.org/10.1007/s00216-023-04638-2
DOI: 10.1007/s00216-023-04638-2
Altmetrics provided by Altmetric