Browse by author
Lookup NU author(s): Professor Cheng Chin
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
This paper aims to evaluate the state-of-the-art object detection network; YOLOv5s (You Only Look Once version 5 small) for the detection of underwater marine debris using AUVs. The development of machine learning and AUVs for detecting marine debris is reviewed. In the paper, the YOLOv5s model is trained on a marine debris dataset using transfer learning. Several other object detection models are also trained on the same dataset for comparison. The results of the trained models are evaluated and the YOLOv5s model is deployed on an Android device to determine its suitability for real-time marine debris detection onboard AUVs. Overall, the YOLOv5s was able to achieve high accuracy scores of up to 91.2% and fast detection speeds of up to 20FPS on a Poco X3 Pro.
Author(s): Chia KY, Chin CS, See S
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: EANN / EAAAI 2023 24th International Conference on Engineering Applications of Neural Networks
Year of Conference: 2023
Pages: 479-490
Print publication date: 01/06/2023
Online publication date: 07/06/2023
Acceptance date: 28/03/2023
ISSN: 1865-0929
Publisher: Springer
URL: https://doi.org/10.1007/978-3-031-34204-2_39
DOI: 10.1007/978-3-031-34204-2_39
Library holdings: Search Newcastle University Library for this item
Series Title: Communications in Computer and Information Science
ISBN: 9783031342035