Toggle Main Menu Toggle Search

Open Access padlockePrints

Gate-ID: WiFi-Based Human Identification Irrespective of Walking Directions in Smart Home

Lookup NU author(s): Dr Bo WeiORCiD

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

© 2014 IEEE.Research has shown the potential of device-free WiFi sensing for human identification. Each and every human has a unique gait and prior works suggest WiFi devices are able to capture the unique signature of a person's gait. In this article, we show for the first time that the monitored gait could be inconsistent and have mirror-like perturbations when individuals walk through WiFi devices in different directions, provided that the WiFi antenna array is horizontal to the walking path. Such inconsistent mirrored patterns are to negatively affect the uniqueness of gait and accuracy of human identification. Therefore, we propose a system called Gate-ID for accurately identifying individuals' identities irrespective of different walking directions. Gate-ID employs theoretical communication model and real measurements to demonstrate that antenna array orientations and walking directions contribute to the mirror-like patterns in WiFi signals. A novel heuristic algorithm is proposed to infer individual's walking directions. A set of methods are employed to extract and augment the representative spatial-temporal features of gait and enable the system performing irrespective of walking directions. We further propose a novel attention-based deep learning model that fuses various weighted features and ignores ineffective noises to uniquely identify individuals. We implement Gate-ID on commercial off-the-shelf devices. Extensive experiments demonstrate that our system can uniquely identify people with average accuracy of 90.7%-75.7% from a group of 6-20 people, respectively, and improve the accuracy by 12.5%-43.5% compared with baselines.


Publication metadata

Author(s): Zhang J, Wei B, Wu F, Dong L, Hu W, Kanhere SS, Luo C, Yu S, Cheng J

Publication type: Article

Publication status: Published

Journal: IEEE Internet of Things Journal

Year: 2021

Volume: 8

Issue: 9

Pages: 7610-7624

Print publication date: 01/05/2021

Online publication date: 26/11/2020

Acceptance date: 20/11/2020

ISSN (electronic): 2327-4662

Publisher: Institute of Electrical and Electronics Engineers Inc.

URL: https://doi.org/10.1109/JIOT.2020.3040782

DOI: 10.1109/JIOT.2020.3040782


Altmetrics

Altmetrics provided by Altmetric


Share