Browse by author
Lookup NU author(s): Dr Deepayan BhowmikORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© 2021 IEEE. The main objective of this paper to show the potential of multitemporal Sentinel-1 (S-1) and Sentinel-2 (S-2) for detection of water hyacinth in Indian wetlands. Water hyacinth (Pontederia crassipes, also called Eichhornia crassipes) is one of the most destructive invasive weed species in many lakes and river systems worldwide, causing significant adverse economic and ecological impacts. We use the expectation maximization (EM) as a benchmark machine learning algorithm and compare its results with three supervised machine learning classifiers, Support Vector Machine (SVM), Random Forest (RF), and k-Nearest Neighbour (kNN), using both synthetic aperture radar (SAR) and optical data to distinguish between clean and infested waters.
Author(s): Akbari V, Simpson M, Maharaj S, Marino A, Bhowmik D, Prabhu GN, Rupavatharam S, Datta A, Kleczkowski A, Sujeetha JRPA
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: International Geoscience and Remote Sensing Symposium (IGARSS 2021)
Year of Conference: 2021
Pages: 6847-6850
Online publication date: 12/10/2021
Acceptance date: 02/04/2018
ISSN: 2153-7003
Publisher: IEEE
URL: https://doi.org/10.1109/IGARSS47720.2021.9553207
DOI: 10.1109/IGARSS47720.2021.9553207
Library holdings: Search Newcastle University Library for this item
ISBN: 9781665403696