Browse by author
Lookup NU author(s): Jonathan Horsley, Dr Rhys ThomasORCiD, Professor Yujiang WangORCiD, Professor Peter TaylorORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
© 2023 The Authors. Background: When investigating suitability for epilepsy surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in conjunction with functional iEEG abnormalities to aid localisation of the epileptogenic zone (EZ), improving surgical outcomes in epilepsy. Methods: We retrospectively investigated data from 43 patients (42% female) with epilepsy who had surgery following iEEG. Twenty-five patients (58%) were free from disabling seizures (ILAE 1 or 2) at one year. Interictal iEEG functional, and dMRI structural connectivity abnormalities were quantified by comparison to a normative map and healthy controls. We explored whether the resection of maximal abnormalities related to improved surgical outcomes, in both modalities individually and concurrently. Additionally, we suggest how connectivity abnormalities may inform the placement of iEEG electrodes pre-surgically using a patient case study. Findings: Seizure freedom was 15 times more likely in patients with resection of maximal connectivity and iEEG abnormalities (p = 0.008). Both modalities separately distinguished patient surgical outcome groups and when used simultaneously, a decision tree correctly separated 36 of 43 (84%) patients. Interpretation: Our results suggest that both connectivity and iEEG abnormalities may localise epileptogenic tissue, and that these two modalities may provide complementary information in pre-surgical evaluations. Funding: This research was funded by UKRI, CDT in Cloud Computing for Big Data, NIH, MRC, Wellcome Trust and Epilepsy Research UK.
Author(s): Horsley JJ, Thomas RH, Chowdhury FA, Diehl B, McEvoy AW, Miserocchi A, de Tisi J, Vos SB, Walker MC, Winston GP, Duncan JS, Wang Y, Taylor PN
Publication type: Article
Publication status: Published
Journal: eBioMedicine
Year: 2023
Volume: 97
Print publication date: 01/11/2023
Online publication date: 27/10/2023
Acceptance date: 11/10/2023
Date deposited: 08/01/2024
ISSN (electronic): 2352-3964
Publisher: Elsevier BV
URL: https://doi.org/10.1016/j.ebiom.2023.104848
DOI: 10.1016/j.ebiom.2023.104848
Data Access Statement: Data to reproduce the main findings will be made available upon request.
Altmetrics provided by Altmetric