Browse by author
Lookup NU author(s): Jidapa Plaimart, Dr Kishor AcharyaORCiD, Adrian Blackburn, Dr Wojciech MrozikORCiD, Professor Russell DavenportORCiD, Professor David WernerORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Regulators in England and Wales have set new targets under the Environment Act 2021 for freshwater quality by 2038 that include halving the length of rivers polluted by harmful metals from abandoned mines and reducing phosphorus loadings from treated wastewater by 80%. In this context, an intriguing win-win opportunity exists in the removal of iron from abandoned mines and phosphate from small sewage treatment plants by coprecipitation in constructed wetlands (CWs). We investigated such a CW located at Lamesley, Northeast England, which cotreats abandoned coal mine and secondary-treated sewage treatment plant effluents. We assessed the removal of nutrients, heavy metals, organic micropollutants, and faecal coliforms by the CW, and characterized changes in the water bacteriology comprehensively using environmental DNA. The CW effectively removed ammonium-nitrogen, phosphorus, iron, and faecal coliforms by an average of 86, 74, 98, and 75%, respectively, to levels below or insignificantly different from those in the receiving river. The CW also effectively removed micropollutants such as acetaminophen, caffeine, and sulpiride by 70-100%. Molecular microbiology methods showed successful conversion of sewage and mine water microbiomes into a freshwater microbiome. Overall, the CW significantly reduced impacts on the rural water environment with minimal operational requirements.
Author(s): Plaimart J, Acharya K, Blackburn A, Mrozik W, Davenport RJ, Werner D
Publication type: Article
Publication status: Published
Journal: Water Science & Technology
Year: 2024
Volume: 89
Issue: 1
Pages: 116-131
Online publication date: 01/01/2024
Acceptance date: 20/12/2023
Date deposited: 29/01/2024
ISSN (print): 0273-1223
ISSN (electronic): 1996-9732
Publisher: IWA Publishing
URL: https://doi.org/10.2166/wst.2024.001
DOI: 10.2166/wst.2024.001
Data Access Statement: 16S sequencing data generated in this project has been submitted to the NCBI Sequence Read Archive (SRA) with BioProject accession number PRJNA837409. Additional data created during this research are openly available (https://doi.org/10.25405/data.ncl.24937038). Please contact Newcastle Research Data Service at rdm@ncl.ac.uk for access instructions.
PubMed id: 38214989
Altmetrics provided by Altmetric