Toggle Main Menu Toggle Search

Open Access padlockePrints

Real-time edge computing design for physiological signal analysis and classification

Lookup NU author(s): Dr Ravi Suppiah, Dr Khalid Abidi, Dr Anurag Sharma

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

Physiological Signals like Electromography (EMG) and Electroencephalography (EEG) can be analysed and decoded to provide vital information that can be used in a range of applications like rehabilitative robotics and remote device control. The process of acquiring and using these signals requires many compute-intensive tasks like signal acquisition, signal processing, feature extraction, and machine learning. Performing these activities on a PC-based system with well-established software tools like Python and Matlab is the first step in designing solutions based upon these signals. In the application domain of rehabilitative robotics, one of the main goals is to develop solutions that can be deployed for the use of individuals who need them in improving their Acitivities-for-Daily Living (ADL). To achieve this objective, the final solution must be deployed onto an embedded solution that allows high portability and ease-of-use. Porting a solution from a PC-based environment onto a resource-constraint one such as a microcontroller poses many challenges. In this research paper, we propose the use of an ARM-based Corex M-4 processor. We explore the various stages of the design from the initial testing and validation, to the deployment of the proposed algorithm on the controller, and further investigate the use of Cepstrum features to obtain a high classification accuracy with minimal input features. The proposed solution is able to achieve an average classification accuracy of 95.34% for all five classes in the EMG domain and 96.16% in the EEG domain on the embedded board.


Publication metadata

Author(s): Suppiah R, Noori K, Abidi K, Sharma A

Publication type: Article

Publication status: Published

Journal: Biomedical Physics & Engineering Express

Year: 2024

Volume: 10

Issue: 4

Online publication date: 04/06/2024

Acceptance date: 23/05/2024

Date deposited: 17/06/2024

ISSN (electronic): 2057-1976

Publisher: IOP Publishing

URL: https://doi.org/10.1088/2057-1976/ad4f8d

DOI: 10.1088/2057-1976/ad4f8d

Data Access Statement: The data that support the findings of this study are openly available at the following URL/DOI: https:// doi.org/10.1038/sdata.2014.47

PubMed id: 38781938


Altmetrics

Altmetrics provided by Altmetric


Share