Browse by author
Lookup NU author(s): Professor Marieke Emonts-le ClercqORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Author(s): Patel H, Carter MJ, Jackson H, Powell O, Fish M, Terranova-Barberio M, Spada F, Petrov N, Wellman P, Darnell S, Mustafa S, Todd K, Bishop C, Cohen JM, Kenny J, van den Berg S, Sun T, Davis F, Jennings A, Timms E, Thomas J, Nyirendra M, Nichols S, Estamiana Elorieta L, D'Souza G, Wright V, De T, Hadgood-Coote D, Ramnarayan P, Tissières P, Whittaker E, Herberg J, Cunnington A, Kaforou M, Ellis R, Malim MH, Tibby M, ShankarHari M, Levin M, DIAMONDS consortium, Emonts M
Publication type: Article
Publication status: Published
Journal: Nature Communications
Year: 2024
Volume: 15
Online publication date: 19/09/2024
Acceptance date: 22/08/2024
Date deposited: 26/09/2024
ISSN (electronic): 2041-1723
Publisher: Nature Publishing Group
URL: https://doi.org/10.1038/s41467-024-52246-0
DOI: 10.1038/s41467-024-52246-0
Data Access Statement: The gene counts and patient metadata for the Transcriptomic Cohort are available at ArrayExpress under accession code E-MTAB-11671. The merged and normalized dataset used for the analysis of the discovery dataset is available in ArrayExpress under accession code E-MTAB-12793. The raw FCS files for Supplementary Fig. 10 are available on ImmPort under accession code SDY2735. Source data are provided with this paper. Code availability Code for the bioinformatic analyses of mass cytometry data is available at: https://github.com/michaeljamescarter/SIFIC. Code for the analysis of RNA-seq data is available at: https://github.com/PIDBG/misc_transcriptomic_signature29. A permanent repository for the code is at the https://doi.org/10.5281/zenodo.12790924.
Altmetrics provided by Altmetric