Browse by author
Lookup NU author(s): Professor Jarka Glassey
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
© 2024 Ramos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. We evaluated by comparing the performance of three pneumatically-driven bioreactors in the production of L-asparaginase (L-ASNase), an enzyme used to treat leukaemia and lymphoma. A two-step screening process was conducted to detect Cunninghamella spp. strains producing L-ASNase. Cunninghamella echinulata DSM1905 produced the highest levels of L-ASNase during screening assays. Subsequently, fermentations were performed in bubble column (BCR), airlift (ALR), and hybrid fixed-bed airlift (FB-ALR) bioreactors to determine the best upstream bioprocess. Mycelial biomass production was higher in BCR than in ALR and FB-ALR (p ≤ 0.0322). The activity of L-ASNase produced in FB-ALR, in which the fungus grew as a consistent biofilm, was significantly higher (p ≤ 0.022) than that from ALR, which was higher than that of BCR (p = 0.036). The specific activity of ALR and FB-ALR presented no differences (p = 0.073), but it was higher than that of BCR (p ≤ 0.032). In conclusion, C. echinulata DSM1905, grown under the biofilm phenotype, produced the highest levels of L-ASNase, and FB-ALR was the best upstream system for enzyme production.
Author(s): da Silva Ramos RCP, de Oliveira NS, Bianchini LF, Azevedo-Alanis LR, Pimentel IC, Hardy AMTG, Murata RM, Glassey J, Rosa EAR
Publication type: Article
Publication status: Published
Journal: PLoS ONE
Year: 2024
Volume: 19
Issue: 9
Online publication date: 20/09/2024
Acceptance date: 29/07/2024
Date deposited: 01/10/2024
ISSN (electronic): 1932-6203
Publisher: Public Library of Science
URL: https://doi.org/10.1371/journal.pone.0308847
DOI: 10.1371/journal.pone.0308847
Data Access Statement: All relevant data are within the manuscript and its Supporting information files.
PubMed id: 39302957
Altmetrics provided by Altmetric