Toggle Main Menu Toggle Search

Open Access padlockePrints

Large contribution of recent photosynthate to soil respiration in tropical dipterocarp forest revealed by girdling

Lookup NU author(s): Professor Yit Arn TehORCiD

Downloads


Licence

This is the authors' accepted manuscript of an article that has been published in its final definitive form by Wiley-Blackwell Publishing Ltd, 2022.

For re-use rights please refer to the publisher's terms and conditions.


Abstract

Tropical forests are the most productive terrestrial ecosystems, fixing over 40 Pg of carbon from the atmosphere each year. A substantial portion of this carbon is allocated below-ground to roots and root-associated micro-organisms. However, there have been very few empirical studies on the dynamics of this below ground transfer, especially in tropical forests where carbon allocation processes are influenced by high plant species diversity. We used a whole-stand girdling experiment to halt the below-ground transfer of recent photosynthates in a lowland tropical forest in Borneo. By girdling 209 large trees in a 0.48 ha plot, we determined: (a) the contribution of recent photosynthate to root-rhizosphere respiration and; (b) the relationships among the disruption of this below-ground carbon supply, tree species composition and mortality. Mortality of the 209 trees was 62% after 370 days, with large variation among species and particularly high mortality within the Dipterocarpaceae (99%) and Fagaceae (100%) families. We also observed a higher risk of mortality following girdling for species with lower wood density. Soil CO2 emissions declined markedly (36 ± 5%) over ~50 days following girdling in three of six monitored subplots. In the other three subplots there was either a marginal decline or no response of soil CO2 emissions to girdling. The decrease in soil CO2 efflux was larger in subplots with dominance of Dipterocarpaceae. Synthesis. Our results indicate high spatial variation in the coupling of below-ground carbon allocation and root-rhizosphere respiration in this tropical forest, with a closer coupling in forest dominated by Dipterocarpaceae. Our findings highlight the implications of tree species composition of tropical forests in affecting the dynamics of below-ground carbon transfer and its release to the atmosphere.


Publication metadata

Author(s): Nottingham AT, Cheesman AW, Riutta T, Doughty CE, Telford E, Huaraca Huasco W, Svátek MKJ, Majalap N, Malhi Y, Meir P, Teh YA

Publication type: Article

Publication status: Published

Journal: Journal of Ecology

Year: 2022

Volume: 110

Issue: 2

Pages: 387-403

Print publication date: 01/02/2022

Online publication date: 31/10/2021

Acceptance date: 20/09/2021

Date deposited: 05/12/2024

ISSN (print): 0022-0477

ISSN (electronic): 1365-2745

Publisher: Wiley-Blackwell Publishing Ltd

URL: https://doi.org/10.1111/1365-2745.13806

DOI: 10.1111/1365-2745.13806

Data Access Statement: All data are openly available in Zenodo, within the SAFE community data https://doi.org/10.5281/zenodo.5519572 (Nottingham et al., 2021). Additional data for the girdling plot (SAF-05) are available here: https://doi.org/10.5281/zenodo.4542881 (Riutta, Ewers, et al., 2021).


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
NERC, grant numbers NE/K01627X/1 and NE/G018278/1
Sime Darby Foundation

Share