Toggle Main Menu Toggle Search

Open Access padlockePrints

Systematic transcriptomic analysis and temporal modelling of human fibroblast senescence

Lookup NU author(s): Rebekah Scanlan, Dr Louise Pease, Hannah O'KeefeORCiD, Dr Alvaro Martinez Guimera, Dr James Wordsworth, Dr Daryl Shanley

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

Cellular senescence is a diverse phenotype characterised by permanent cell cycle arrest and an associated secretory phenotype (SASP) which includes inflammatory cytokines. Typically, senescent cells are removed by the immune system, but this process becomes dysregulated with age causing senescent cells to accumulate and induce chronic inflammatory signalling. Identifying senescent cells is challenging due to senescence phenotype heterogeneity, and senotherapy often requires a combinatorial approach. Here we systematically collected 119 transcriptomic datasets related to human fibroblasts, forming an online database describing the relevant variables for each study allowing users to filter for variables and genes of interest. Our own analysis of the database identified 28 genes significantly up- or downregulated across four senescence types (DNA damage induced senescence (DDIS), oncogene induced senescence (OIS), replicative senescence, and bystander induced senescence) compared to proliferating controls. We also found gene expression patterns of conventional senescence markers were highly specific and reliable for different senescence inducers, cell lines, and timepoints. Our comprehensive data supported several observations made in existing studies using single datasets, including stronger p53 signalling in DDIS compared to OIS. However, contrary to some early observations, both p16 and p21 mRNA levels rise quickly, depending on senescence type, and persist for at least 8–11 days. Additionally, little evidence was found to support an initial TGFβ-centric SASP. To support our transcriptomic analysis, we computationally modelled temporal protein changes of select core senescence proteins during DDIS and OIS, as well as perform knockdown interventions. We conclude that while universal biomarkers of senescence are difficult to identify, conventional senescence markers follow predictable profiles and construction of a framework for studying senescence could lead to more reproducible data and understanding of senescence heterogeneity.


Publication metadata

Author(s): Scanlan RL, Pease L, O'Keefe H, Martinez-Guimera A, Rasmussen L, Wordsworth J, Shanley D

Publication type: Article

Publication status: Published

Journal: Frontiers in Aging

Year: 2024

Volume: 5

Online publication date: 29/08/2024

Acceptance date: 19/08/2024

Date deposited: 18/03/2025

ISSN (electronic): 2673-6217

Publisher: Frontiers Media SA

URL: https://doi.org/10.3389/fragi.2024.1448543

DOI: 10.3389/fragi.2024.1448543

Data Access Statement: The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material. https://www.frontiersin.org/journals/aging/articles/10.3389/fragi.2024.1448543/full#SM1


Altmetrics


Funding

Funder referenceFunder name
NC/S001050/1National Centre for the Replacement, Refinement and Reduction of Animals NC3R
Novo Nordisk Fonden Denmark
NC3Rs
NNF17OC0027812Novo Nordisk Foundation

Share