Toggle Main Menu Toggle Search

Open Access padlockePrints

Machine learning in cardiovascular risk assessment: Towards a precision medicine approach

Lookup NU author(s): Professor Kimon Stamatelopoulos

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

© 2025 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.Cardiovascular diseases remain the leading cause of global morbidity and mortality. Validated risk scores are the basis of guideline-recommended care, but most scores lack the capacity to integrate complex and multidimensional data. Limitations inherent to traditional risk prediction models and the growing burden of residual cardiovascular risk highlight the need for refined strategies that go beyond conventional paradigms. Artificial intelligence and machine learning (ML) provide unique opportunities to refine cardiovascular risk assessment and surveillance through the integration of diverse data types and sources, including clinical, electrocardiographic, imaging and multi-omics derived data. In fact, ML models, such as deep neural networks, can handle high-dimensional data through which phenotyping and cardiovascular risk assessment across diverse patient populations become much more precise, fostering a paradigm shift towards more personalized care. Here, we review the role of ML in advancing cardiovascular risk assessment and discuss its potential to identify novel therapeutic targets and to improve prevention strategies. We also discuss key challenges inherent to ML, such as data quality, standardized reporting, model transparency and validation, and discuss barriers in its clinical translation. We highlight the transformative potential of ML in precision cardiology and advocate for more personalized cardiovascular prevention strategies that go beyond previous notions.


Publication metadata

Author(s): Wang Y, Aivalioti E, Stamatelopoulos K, Zervas G, Mortensen MB, Zeller M, Liberale L, Di Vece D, Schweiger V, Camici GG, Luscher TF, Kraler S

Publication type: Review

Publication status: Published

Journal: European Journal of Clinical Investigation

Year: 2025

Volume: 55

Issue: S1

Online publication date: 07/04/2025

Acceptance date: 22/02/2025

ISSN (print): 0014-2972

ISSN (electronic): 1365-2362

Publisher: John Wiley and Sons Inc

URL: https://doi.org/10.1111/eci.70017

DOI: 10.1111/eci.70017


Share