Toggle Main Menu Toggle Search

Open Access padlockePrints

Euclid preparation: LXVIII. Extracting physical parameters from galaxies with machine learning

Lookup NU author(s): Dr James Nightingale

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

© The Authors 2025.The Euclid mission is generating a vast amount of imaging data in four broadband filters at a high angular resolution. This data will allow for the detailed study of mass, metallicity, and stellar populations across galaxies that will constrain their formation and evolutionary pathways. Transforming the Euclid imaging for large samples of galaxies into maps of physical parameters in an efficient and reliable manner is an outstanding challenge. Here, we investigate the power and reliability of machine learning techniques to extract the distribution of physical parameters within well-resolved galaxies. We focus on estimating stellar mass surface density, mass-averaged stellar metallicity, and age. We generated noise-free synthetic high-resolution (100 pc × 100 pc) imaging data in the Euclid photometric bands for a set of 1154 galaxies from the TNG50 cosmological simulation. The images were generated with the SKIRT radiative transfer code, taking into account the complex 3D distribution of stellar populations and interstellar dust attenuation. We used a machine learning framework to map the idealised mock observational data to the physical parameters on a pixel-by-pixel basis. We find that stellar mass surface density can be accurately recovered with a ≤0.130 dex scatter. Conversely, stellar metallicity and age estimates are, as expected, less robust, but they still contain significant information that originates from underlying correlations at a sub-kiloparsec scales between stellar mass surface density and stellar population properties. As a corollary, we show that TNG50 follows a spatially resolved mass-metallicity relation that is consistent with observations. Due to its relatively low computational and time requirements, which has a time-frame of minutes without dedicated high performance computing infrastructure once it has been trained, our method allows for fast and robust estimates of the stellar mass surface density distributions of nearby galaxies from four-filter Euclid imaging data. Equivalent estimates of stellar population properties (stellar metallicity and age) are less robust but still hold value as first-order approximations across large samples.


Publication metadata

Author(s): Kovacic I, Baes M, Nersesian A, Andreadis N, Nemani L, Abdurro'Uf, Bisigello L, Bolzonella M, Tortora C, Van Der Wel A, Cavuoti S, Conselice CJ, Enia A, Hunt LK, Iglesias-Navarro P, Iodice E, Knapen JH, Marleau FR, Muller O, Peletier RF, Roman J, Ragusa R, Salucci P, Saifollahi T, Scodeggio M, Siudek M, De Waele T, Amara A, Andreon S, Auricchio N, Baccigalupi C, Baldi M, Bardelli S, Battaglia P, Bender R, Bodendorf C, Bonino D, Bon W, Branchini E, Brescia M, Brinchmann J, Camera S, Capobianco V, Carbone C, Carretero J, Casas S, Castander FJ, Castellano M, Castignani G, Cimatti A, Colodro-Conde C, Congedo G, Conversi L, Copin Y, Courbin F, Courtois HM, Da Silva A, Degaudenzi H, De Lucia G, Di Giorgio AM, Dinis J, Douspis M, Dubath F, Dupac X, Dusini S, Ealet A, Farina M, Farrens S, Faustini F, Ferriol S, Fosalba P, Frailis M, Franceschi E, Galeotta S, Gillis B, Giocoli C, Grazian A, Grupp F, Guzzo L, Haugan SVH, Holmes W, Hook I, Hormuth F, Hornstrup A, Jahnke K, Jhabvala M, Joachimi B, Keihanen E, Kermiche S, Kiessling A, Kilbinger M, Kubik B, Kuijken K, Kummel M, Kunz M, Kurki-Suonio H, Ligori S, Lilje PB, Lindholm V, Lloro I, Maino D, Maiorano E, Mansutti O, Marcin S, Marggraf O, Markovic K, Martinelli M, Martinet N, Marulli F, Massey R, Medinaceli E, Mei S, Melchior M, Mellier Y, Meneghetti M, Merlin E, Meylan G, Moresco M, Moscardini L, Niemi S-M, Nightingale JW, Padilla C, Paltani S, Pasian F, Pedersen K, Pettorino V, Pires S, Polenta G, Poncet M, Popa LA, Pozzetti L, Raison F, Rebolo R, Renzi A, Rhodes J, Riccio G, Romelli E, Roncarelli M, Rossetti E, Saglia R, Sakr Z, Sanchez AG, Sapone D, Sartoris B, Schirmer M, Schneider P, Schrabback T, Secroun A, Seidel G, Serrano S, Sirignano C, Sirri G, Stanco L, Steinwagner J, Tallada-Crespi P, Tavagnacco D, Taylor AN, Teplitz HI, Tereno I, Toledo-Moreo R, Torradeflot F, Tutusaus I, Valenziano L, Vassallo T, Verdoes Kleijn G, Veropalumbo A, Wang Y, Weller J, Zacchei A, Zamorani G, Zucca E, Biviano A, Bozzo E, Burigana C, Calabrese M, Di Ferdinando D, Escartin Vigo JA, Finelli F, Gracia-Carpio J, Matthew S, Mauri N, Pontinen M, Scottez V, Tenti M, Viel M, Wiesmann M, Akrami Y, Allevato V, Alvi S, Anselmi S, Archidiacono M, Atrio-Barandela F, Ballardini M, Bethermin M, Blot L, Borgani S, Bruton S, Cabanac R, Calabro A, Camacho Quevedo B, Canas-Herrera G, Cappi A, Caro F, Carvalho CS, Castro T, Chambers KC, Contini T, Cooray AR, Cucciati O, Desprez G, Diaz-Sanchez A, Diaz JJ, Di Domizio S, Dole H, Escoffier S, Ferrari AG, Ferreira PG, Ferrero I, Finoguenov A, Fontana A, Fornari F, Gabarra L, Ganga K, Garcia-Bellido J, Gasparetto T, Gautard V, Gaztanaga E, Giacomini F, Gianotti F, Gozaliasl G, Gutierrez CM, Hall A, Hemmati S, Hildebrandt H, Hjorth J, Jimenez Munoz A, Kajava JJE, Kansal V, Karagiannis D, Kirkpatrick CC, Le Brun AMC, Le Graet J, Lesgourgues J, Liaudat TI, Loureiro A, Macias-Perez J, Maggio G, Magliocchetti M, Mannucci F, Maoli R, Martin-Fleitas J, Martins CJAP, Maurin L, Metcalf RB, Miluzio M, Monaco P, Montoro A, Mora A, Moretti C, Morgante G, Walton NA, Patrizii L, Popa V, Potter D, Risso I, Rocci P-F, Sahlen M, Sarpa E, Scarlata C, Schneider A, Sereno M, Shankar F, Simon P, Spurio Mancini A, Stadel J, Stanford SA, Tanidis K, Tao C, Testera G, Teyssier R, Toft S, Tosi S, Troja A, Tucci M, Valieri C, Valiviita J, Vergani D, Verza G, Vielzeuf P

Publication type: Article

Publication status: Published

Journal: Astronomy and Astrophysics

Year: 2025

Volume: 695

Print publication date: 01/03/2025

Online publication date: 03/04/2025

Acceptance date: 23/01/2025

Date deposited: 24/04/2025

ISSN (print): 0004-6361

ISSN (electronic): 1432-0746

Publisher: EDP Sciences

URL: https://doi.org/10.1051/0004-6361/202453111

DOI: 10.1051/0004-6361/202453111


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
Academy of Finland
Agenzia Spaziale Italiana
Belgian Science Policy
Canadian Euclid Consortium
Danish Space Research Institute
Deutsches Zentrum für Luft-und Raumfahrt
European Space Agency
French Centre National d’Etudes Spatiales
Fundação para a Ciência e a Tecnologia
European Union
Ministerio de Ciencia e Innovación
National Aeronautics and Space Administration
National Astronomical Observatory of Japan
Netherlandse Onderzoekschool Voor Astronomie
Norwegian Space Agency
Swiss Space Office (SSO)
Romanian Space Agency
State Secretariat for Education, Research and Innovation (SERI)
United Kingdom Space Agency

Share