Browse by author
Lookup NU author(s): Dr Madurai Lakshmi, Dr Gajanan Sherbet, Emeritus Professor Oliver Hinton
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
This study aims to identify the most and least significant prognostic factors for breast cancer survival analysis by means of feature evaluation indices derived from multilayer feedforward backpropagation neural networks (MLFFBPNN), fuzzy k-nearest neighbour classifier (FK-NN) and a logistic regression-based backward stepwise method (ER). The data used for the survival analysis were collected from 100 women who had been clinically diagnosed with breast disease in the form of carcinoma or benign conditions. The data set consists of seven different histological and cytological prognostic factors and two corresponding outputs to be predicted (whether the patient is alive or dead within 5 years of diagnosis). The MLFFBPNN, FK-NN and LR based indices identified different subsets of the factors as the most significant sets. We therefore suggest that it could be dangerous to rely on one method's outcome for assessment of such factors. It should also be noted that "S-phase fraction" (SPF) is the common cytological factor identified by all three methods while none of the three methods identified another cytological factor, namely "minimum (start) nuclear pleomorphism index" (NPI/sub min/). We, therefore, conclude that "S-phase fraction" and "minimum (start) nuclear pleomorphism index" appear to be the most and least important prognostic factors, respectively, for survival analysis in breast cancer patients, and should be investigated thoroughly in future clinical studies in oncology. (11 References).
Author(s): Sherbet GV; Hinton OR; Lakshmi MS; Seker H; Odetayo MO; Petrovic D; Naguib RNG; Bartoli C; Alasio L
Editor(s): Kinsner, W., Sebak, A., Ferens, K.
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: Canadian Conference on Electrical and Computer Engineering
Year of Conference: 2002
Pages: 1211-1215
ISSN: 0840-7789
Publisher: IEEE
URL: http://dx.doi.org/10.1109/CCECE.2002.1013121
DOI: 10.1109/CCECE.2002.1013121
Library holdings: Search Newcastle University Library for this item
ISBN: 0780375149