Toggle Main Menu Toggle Search

Open Access padlockePrints

Deceleration by dynamical friction in a gaseous medium

Lookup NU author(s): Dr Francisco Sanchez-Salcedo, Professor Axel Brandenburg


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


The drag force experienced by a gravitational body moving in a straight-line trajectory through a homogeneous isothermal gaseous medium of given sound speed is investigated numerically. For perturbers with constant velocity, linear theory describes successfully the temporal evolution and magnitude of the force. The result obtained recently by E. Ostriker - that for Mach numbers ℳ = 1-2 the force is stronger in a gaseous medium than in a collisionless medium, as described by the standard Chandrisekhar formula - is confirmed. The corresponding minimum impact radius rmin for a body described with a Plummer model with core radius Rsoft, is rmin/Rsoft ≈ 2.25. When M < 1, the drag force is strongly suppressed, which is consistent with Ostriker's results but in disagreement with the Chandrasekhar formula. However, when the perturber is decelerated by its own wake to M < 1, the effective drag force remains initially somewhat larger than the value in the case of constant velocity because it takes some time to get rid of the wake that was generated during its supersonic history.

Publication metadata

Author(s): Sanchez-Salcedo FJ, Brandenburg A

Publication type: Article

Publication status: Published

Journal: Astrophysical Journal

Year: 1999

Volume: 522

Issue: 1

Pages: L35-L38

Print publication date: 01/09/1999

ISSN (print): 0004-637X

ISSN (electronic): 1538-4357

Publisher: Institute of Physics Publishing, Inc.


DOI: 10.1086/312215


Altmetrics provided by Altmetric