Browse by author
Lookup NU author(s): Dr Michael Jackson, Dennis Kirk
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Little is known about sequence organization close to human centromeres, despite empirical and theoretical data which suggest that it may be unusual. Here we present maps which physically define large sequence duplications flanking the centromeric satellites of human chromosome 10, together with a fluorescence in situ hybridization (FISH) analysis of pericentromeric sequence stability. Our results indicate that the duplications on each chromosome arm are organized into two blocks of ~ 250 and 150 kb separated by ~ 300 kb of non-duplicated DNA. The larger proximal blocks, containing ZNF11A, ZNF33A and ZNF37A (10p11) and ZNF11B, ZNF33B and ZNF37B (10q11), are inverted. However, the smaller distal blocks, containing D10S141A (10p11) and D10S141B (10q11), are not. A primate FISH analysis indicates that these loci were duplicated before the divergence of orang-utans from other Great Apes, that a cytogenetically cryptic pericentric inversion may have been involved in the formation of the flanking duplications and that they have undergone further rearrangement in other primate species. More surprising is the fact that sequences across the entire pericentromeric region appear to have undergone unprecedented levels of duplication, transposition, inversion and either deletion or sequence divergence in all primate species analysed. Extrapolating our data to the whole genome suggests that a minimum of 50 Mb of DNA in centromere-proximal regions is subject to an elevated level of mechanistically diverse sequence rearrangements compared with the bulk of genomic DNA.
Author(s): Jackson MS, Rocchi M, Thompson G, Hearn T, Crosier M, Guy J, Kirk D, Mulligan L, Ricco A, Piccininni S, Marzella R, Viggiano L, Archidiacono N
Publication type: Article
Publication status: Published
Journal: Human Molecular Genetics
Year: 1999
Volume: 8
Issue: 2
Pages: 205-215
Print publication date: 01/01/1999
ISSN (print): 0964-6906
ISSN (electronic): 1460-2083
Publisher: Oxford University Press
URL: http://dx.doi.org/10.1093/hmg/8.2.205
DOI: 10.1093/hmg/8.2.205
PubMed id: 9931328
Altmetrics provided by Altmetric