Browse by author
Lookup NU author(s): Professor Geoffrey Blewitt, Dr David Lavallee
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The objective of this paper is to outline the fundamental concepts underlying the estimation of a global strain rate model. We use a variant of the method first introduced by Haines and Holt (1993) to estimate the strain rate tensor field within all of the Earth's deforming regions. Currently the observables used are ∼1650 geodetic velocities, seismic moment tensors from the Harvard CMT catalog, and Quaternary fault slip rate data. A model strain rate field and velocity field are obtained in a least-squares fit to both the geodetic velocities and the observed strain rates inferred from fault slip rates. Seismic moment tensors are used to provide a priori constraints on the style and direction (not magnitude) of the model strain rate field for regions where no fault slip rate data are available. The model will soon be expanded to include spreading rates, ocean transform azimuths, and more fault slip rate data. We present a first estimate of the second invariant of the global model strain rate field. We also present Euler poles obtained by fitting geodetic vectors located on defined rigid plates. We find that 17% of the total model moment rate is accommodated in zones of (diffuse) continental deformation. Copy right© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.
Author(s): Kreemer C, Haines J, Holt W, Blewitt G, Lavallée DA
Publication type: Article
Publication status: Published
Journal: Earth, Planets and Space
Year: 2000
Volume: 52
Issue: 10
Pages: 765-770
Print publication date: 01/01/2000
ISSN (print): 1343-8832
ISSN (electronic):
Publisher: Terra Scientific Publishing Company