Browse by author
Lookup NU author(s): Emerita Professor Sandra Edwards
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Previous experiments have indicated that reproductive function in lean, modern genotypes may be more dependent on body protein mass than, as previously believed, on body lipid reserves. This was investigated in a 3 × 2 factorial arrangement of treatments, involving 60 first-parity sows, comparing three pregnancy feeding strategies and two lactation diets. During pregnancy, sows were fed either a basal diet (5 g lysine/kg, 13 MJ of DE/kg [C]) or the same quantity of basal diet + energy source [E], or additional basal diet supplying both protein and energy [A]. The level of supplement for E and A was adjusted weekly to achieve a backfat thickness measurement (P2 position) of 28 mm at farrowing. Isoenergetic lactation diets were fed to appetite and provided either high (180 g CP/kg, 9 g lysine/kg [H]) or low lysine (120 g CP/kg, 6 g lysine/kg [L]). From d 21 of lactation, sows were separated from their litters and housed next to a boar for 8 h each day; final weaning occurred on d 31. Pregnancy treatment differences in backfat and weight were achieved, with C sows having less backfat on d 1 of lactation than E and A sows (E = 28.1, A = 28.0, C = 22.7 kg, P < 0.001). Sows fed additional basal diet were heavier than E sows, which were heavier than C sows (E = 190, A = 201, C = 178 kg, P < 0.001). Average feed intake over lactation showed a pregnancy feeding effect, with E sows eating less than A or C sows (E = 4.9, A = 5.2, C = 5.4 kg/d, P < 0.005). Total lactation weight loss was affected by pregnancy feeding (E = 18.0, A = 19.0, C = 8.4 kg, P < 0.05) and by lactation diet (L = 19.0, H = 11.3 kg, P < 0.05), whereas total lactation backfat loss was affected only by pregnancy treatment (E = 6.9, A = 6.5, C = 4.6 mm, P < 0.05). No pregnancy treatment or lactation diet effects were observed for litter performance. Lactation diet affected weaning-to-estrus interval, with more sows on the H diet coming into estrus within 6 d of partial weaning (P < 0.05), but there was no pregnancy treatment effect. Therefore, voluntary feed intake during lactation was suppressed by increased fat reserves at a limited body protein mass but not when body protein mass was also increased. Partial weaning-to-estrus interval was increased by reduced dietary protein. ©2001 American Society of Animal Science. All rights reserved.
Author(s): Edwards SA; Sinclair AG; Bland VC
Publication type: Article
Publication status: Published
Journal: Journal of Animal Science
Year: 2001
Volume: 79
Issue: 9
Pages: 2397-2405
ISSN (print): 0021-8812
ISSN (electronic): 1525-3163
Publisher: American Society of Animal Science
PubMed id: 11583426