Browse by author
Lookup NU author(s): Dr Wilfred Roling
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Knowledge about the relationship between microbial community structure and hydrogeochemistry (e.g., pollution, redox and degradation processes) in landfill leachate-polluted aquifers is required to develop tools for predicting and monitoring natural attenuation. In this study analyses of pollutant and redox chemistry were conducted in parallel with culture-independent profiling of microbial communities present in a well-defined aquifer (Banisveld, The Netherlands). Degradation of organic contaminants occurred under iron-reducing conditions in the plume of pollution, while upstream of the landfill and above the plume denitrification was the dominant redox process. Beneath the plume iron reduction occurred. Numerical comparison of 16S ribosomal DNA (rDNA)-based denaturing gradient gel electrophoresis (DGGE) profiles of Bacteria and Archaea in 29 groundwater samples revealed a clear difference between the microbial community structures inside and outside the contaminant plume. A similar relationship was not evident in sediment samples. DGGE data were supported by sequencing cloned 16S rDNA. Upstream of the landfill members of the β subclass of the class Proteobacteria (β-proteobacteria) dominated. This group was not encountered beneath the landfill, where gram-positive bacteria dominated. Further downstream the contribution of gram-positive bacteria to the clone library decreased, while the contribution of δ-proteobacteria strongly increased and β-proteobacteria reappeared. The β-proteobacteria (Acidovorax, Rhodoferax) differed considerably from those found upstream (Gallionella, Azoarcus). Direct comparisons of cloned 16S rDNA with bands in DGGE profiles revealed that the data from each analysis were comparable. A relationship was observed between the dominant redox processes and the bacteria identified. In the iron-reducing plume members of the family Geobacteraceae made a strong contribution to the microbial communities. Because the only known aromatic hydrocarbon-degrading, iron-reducing bacteria are Geobacter spp., their occurrence in landfill leachate-contaminated aquifers deserves more detailed consideration.
Author(s): Roling WFM, Van Breukelen BM, Braster M, Lin B, Van Verseveld HW
Publication type: Article
Publication status: Published
Journal: Applied and Environmental Microbiology
Year: 2001
Volume: 67
Issue: 10
Pages: 4619-4629
ISSN (print): 0099-2240
ISSN (electronic): 1098-5336
Publisher: American Society for Microbiology
URL: http://dx.doi.org/10.1128/AEM.67.10.4619-4629.2001
DOI: 10.1128/AEM.67.10.4619-4629.2001
PubMed id: 11571165
Altmetrics provided by Altmetric