Toggle Main Menu Toggle Search

Open Access padlockePrints

Internal evaluation of a physically-based distributed model using data from a Mediterranean mountain catchment

Lookup NU author(s): Stephen Anderton, Professor Enda O'Connell


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


An evaluation of the performance of a physically-based distributed model of a small Mediterennean mountain catchment is presented. This was carried out using hydrological response data, including measurements of runoff, soil moisture, phreactic surface level and actual evapotranspiration. A-priori model parameterisation was based as far as possible on property data measured in the catchment. Limited model calibration was required to identify an appropriate value for terms controlling water loss to a deeper regional aquifer. The model provided good results for an initial calibration period, when judge in terms of catchment discharge. However, model performance for runoff declined substantially when evaluated againts a consecutive, rather drier, period of data. Evaluation against other catchment responses allowed identification of the problems responsible for the observed lack of model robustness in flow simulation. In particular, it was shown that an incorrect parameterisation of the soil water was preventing adequate representation of drainage from soils during hydrogeraph recessions. This excess moisture was then being removed via an overestimation of evapotranspiration. It also appeared that the model underestimated canopy interception. The results presented here suggest that model evaluation against catchment scale variables summarising its water balance can be of great use in identifying problems with model parameterisation, even for distributed models. Evaluation using spatially distributed data yielded less useful information on model performance, owing to the relative sparseness of data points, and problems of mismatch of scale between the measurement and the model grid.

Publication metadata

Author(s): Anderton SP, Latron J, White SM, Llorens P, Gallart F, Salvany C, O'Connell PE

Publication type: Article

Publication status: Published

Journal: Hydrology and Earth System Sciences

Year: 2002

Volume: 6

Issue: 1

Pages: 67-83

Print publication date: 01/01/2002

ISSN (print): 1027-5606

ISSN (electronic): 1607-7938

Publisher: Copernicus


DOI: 10.5194/hess-6-67-2002


Altmetrics provided by Altmetric