Toggle Main Menu Toggle Search

Open Access padlockePrints

Asynchronous Box Calculus

Lookup NU author(s): Professor Maciej KoutnyORCiD


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


The starting point of this paper is an algebraic Petri net framework allowing one to express net compositions, such as iteration and parallel composition, as well as transition synchronisation and restriction. We enrich the original model by introducing new constructs supporting asynchronous interprocess communication. Such a communication is made possible thanks to special 'buffer' places where different transitions (processes) may deposit and remove tokens. We also provide an abstraction mechanism, which hides buffer places, effectively making them private to the processes communicating through them. We then provide an algebra of process expressions, whose constants and operators directly correspond to those used in the Petri net framework. Such a correspondence is used to associate nets to process expressions in a compositional way. That the resulting algebra of expressions is consistent with the net algebra is demonstrated by showing that an expression and the corresponding net generate isomorphic transition systems. This results in the Asynchronous Box Calculus (or ABC), which is a coherent dual model, based on Petri nets and process expressions, suitable for modelling and analysing distributed systems whose components can interact using both synchronous and asynchronous communication.

Publication metadata

Author(s): Devillers R, Klaudel H, Koutny M, Pommereau F

Publication type: Article

Publication status: Published

Journal: Fundamenta Informaticae

Year: 2003

Volume: 54

Issue: 4

Pages: 295-344

ISSN (print): 0169-2968

ISSN (electronic):

Publisher: IOS Press