Browse by author
Lookup NU author(s): Dr Jie ZhangORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Multivariable inferential feedback control of distillation compositions using principal component regression (PCR) models is presented in this paper. Both static and dynamic models are studied. PCR model based software sensors are developed from process operational data, so that the top and bottom product compositions can be estimated from multitray temperature measurements. The problems of colinearity in tray temperature measurements are addressed by using PCR. Static estimation bias and the resulting static control off-sets are eliminated through mean updating of process measurements. Application to a simulated methanol-water distillation column demonstrates the advantage of dynamic PCR model based inferential feedback control. It is shown that dynamic PCR model based inferential estimations are more robust to process operating condition variations than those based on a static PCR model.
Author(s): Zhang J; Ahmed MH
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: Proceedings of the American Control Conference
Year of Conference: 2003
Pages: 1974-1979
ISSN: 0743-1619
Publisher: IEEE
URL: http://dx.doi.org/10.1109/ACC.2003.1243363
DOI: 10.1109/ACC.2003.1243363