Toggle Main Menu Toggle Search

Open Access padlockePrints

Density-functional theory calculations on H defects in Si

Lookup NU author(s): Professor Patrick Briddon


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


We use first principles calculations and elasticity theory to study hydrogen aggregation in silicon. We discuss possible structures of small hydrogen complexes containing 4-12 H atoms and demonstrate that the lowest-energy structure is the hydrogenated glide dislocation loop. We employ elasticity theory of dislocation interaction to show that the dislocation loop is likely to grow in one dimension forming the dislocation dipole. Extending the study to larger numbers of H, we show that the hydrogenated glide dislocation dipole is favoured for H aggregates infinite in one dimension. We discuss the route for its expansion leading to the formation of two-dimensional H aggregates or platelets. © 2003 Elsevier B.V. All rights reserved.

Publication metadata

Author(s): Martsinovich N, Rosa AL, Heggie MI, Ewels CP, Briddon PR

Editor(s): Iye Y., Maekawa S.

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: Physica B: Condensed Matter, 23rd International Conference on Low Temperature Physics

Year of Conference: 2003

Pages: 654-658

ISSN: 0921-4526

Publisher: Elsevier BV


DOI: 10.1016/j.physb.2003.09.105