Browse by author
Lookup NU author(s): Dr Andrew Baker, M Charlton, Dr Sam Richmond
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Recent advances in fluorescence spectrophotometry enable the analysis of river dissolved organic matter. We investigate the potential of detecting sewage pollution in a small, urbanised catchment. Downstream sampling highlighted a summer maximum in tryptophan fluorescence intensity during low flow. No correlation is observed between ammonia and tryptophan fluorescence intensity. In contrast, two sewage related point-pollution events had both high tryptophan fluorescence intensity and ammonia, suggesting that the summer tryptophan increase does not original from foul sewage. Sewage inputs to the river were therefore monitored at summer baseflow. This demonstrated that >10% of the rivers' discharge is provided by sewerage inputs and that these inputs could be grouped by their fluorescence and ammonia properties: (1) 'clean' storm waters with low ammonia and tryptophan intensity (2) 'grey' waters with high tryptophan intensity and low ammonia concentration, and (3) 'foul' waters with high tryptophan intensity and ammonia concentration. All three types of sewerage input occurred irrespective of flow conditions, suggesting that sewerage cross connections are occurring. © 2003 Elsevier Science Ltd. All rights reserved.
Author(s): Baker A, Inverarity R, Charlton ME, Richmond S
Publication type: Article
Publication status: Published
Journal: Environmental Pollution
Year: 2003
Volume: 124
Issue: 1
Pages: 57-70
ISSN (print): 0269-7491
ISSN (electronic): 1873-6424
URL: http://dx.doi.org/10.1016/S0269-7491(02)00408-6
DOI: 10.1016/S0269-7491(02)00408-6
PubMed id: 12683983
Altmetrics provided by Altmetric