Browse by author
Lookup NU author(s): Professor Andrew Benniston, Emeritus Professor Anthony Harriman, Donald Lawrie, Annabelle Mayeux
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
A tripartite supermolecule, comprising a pyrene moiety tethered to a 2,2′:6′,2″-terpyridyl ligand via a 2,5-diethynylated thiophene linker, has been synthesized. This compound is highly fluorescent in solution due to the formation of an intramolecular charge-transfer (CT) state. From consideration of the electrochemical properties, it is concluded that the CT state arises because of charge transfer from pyrene to the central thiophene-based unit. Formation of the CT state involves an increase in dipole moment of ca. 18.5 D. Phosphorescence was not observed but the intermediate population of the triplet state was confirmed by laser flash photolysis. Addition of Zn2+ cations results in a drastic decrease in the fluorescence yield while the absorption spectrum exhibits a pronounced red shift. It appears that the dipole is extended upon cation binding, with the zinc terpyridine terminal acting as the electron acceptor. Again, no phosphorescence was apparent at 77 K. Coordination of a ruthenium(II) 2,2′;6′,2″-terpyridyl metallo-fragment to the vacant terpyridine terminal causes the appearance of weak phosphorescence in fluid solution at room temperature. The emitting species has a lifetime of 2.6 μs in deoxygenated acetonitrile at 20°C. Luminescence, which shows a complex temperature dependence, is attributed to either the lowest-energy metal-to-ligand, charge-transfer triplet localised on the ruthenium(II) complex or to the intraligand CT state. In the later case, spin-orbit coupling effects induced by the ruthenium atom are responsible for promoting emission.
Author(s): Benniston AC, Harriman A, Lawrie DJ, Mayeux A
Publication type: Article
Publication status: Published
Journal: Physical Chemistry Chemical Physics
Year: 2004
Volume: 6
Issue: 1
Pages: 51-57
ISSN (print): 1463-9076
ISSN (electronic): 1463-9084
Publisher: Royal Society of Chemistry
URL: http://dx.doi.org/10.1039/b312286g
DOI: 10.1039/b312286g
Altmetrics provided by Altmetric