Browse by author
Lookup NU author(s): Ashley Willis, Professor Anvar ShukurovORCiD, Professor Andrew Soward, Professor Dmitry Sokoloff
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The thin-disc global asymptotics are discussed for axisymmetric mean-field dynamos with vacuum boundary conditions allowing for non-local terms arising from a finite radial component of the mean magnetic field at the disc surface. This leads to an integro-differential operator in the equation for the radial distribution of the mean magnetic field strength, Q(r) in the disc plane at a distance r from its centre; an asymptotic form of its solution at large distances from the dynamo active region is obtained. Numerical solutions of the integro-differential equation confirm that the non-local effects act similarly to an enhanced magnetic diffusion. This leads to a wider radial distribution of the eigensolution and faster propagation of magnetic fronts, compared to solutions with the radial surface field neglected. Another result of non-local effects is a slowly decaying algebraic tail of the eigenfunctions outside the dynamo active region, Q(r) ∼ r-4, which is shown to persist in non-linear solutions where α-quenching is included. The non-local nature of the solutions can affect the radial profile of the regular magnetic field in spiral galaxies and accretion discs at large distances from the centre. © 2004 Taylor and Francis Ltd.
Author(s): Willis AP, Shukurov A, Soward AM, Sokoloff D
Publication type: Article
Publication status: Published
Journal: Geophysical and Astrophysical Fluid Dynamics
Year: 2004
Volume: 98
Issue: 4
Pages: 345-363
Print publication date: 01/08/2004
ISSN (print): 0309-1929
ISSN (electronic): 1026-7506
Publisher: Taylor & Francis
URL: http://dx.doi.org/10.1080/03091920410001700797
DOI: 10.1080/03091920410001700797
Altmetrics provided by Altmetric