Toggle Main Menu Toggle Search

Open Access padlockePrints

Evidence for a dispersed Hox gene cluster in the platyhelminth parasite Schistosoma mansoni

Lookup NU author(s): Dr Christophe Noel


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


In most bilaterian organisms so far studied, Hox genes are organized in genomic clusters and determine development along the anteroposterior axis. It has been suggested that this clustering, together with spatial and temporal colinearity of gene expression, represents the ancestral condition. However, in organisms with derived modes of embryogenesis and lineage-dependent mechanisms for the determination of cell fate, temporal colinearity of expression can be lost and Hox cluster organization disrupted, as is the case for the ecdysozoans Drosophila melanogaster and Caenorhabditis elegans and the urochordates Ciona intestinalis and Oikopleura dioica. We sought to determine whether a lophotrochozoan, the platyhelminth parasite Schistosoma mansoni, possesses a conserved or disrupted Hox cluster. Using a polymerase chain reaction (PCR)-based strategy, we have cloned and characterized three novel S. mansoni genes encoding orthologues of Drosophila labial (SmHox1), deformed (SmHox4), and abdominal A (SmHox8), as well as the full-length coding sequence of the previously described Smox1, which we identify as an orthologue of fushi tarazu. Quantitative reverse transcriptase-PCR showed that the four genes were expressed at all life-cycle stages but that levels of expression were differentially regulated. Phylogenetic analysis and the conservation of "parapeptide" sequences C-terminal to the homeodomains of SmHox8 and Smox1 support the grouping of platyhelminths within the lophotrochozoan clade. However, Bacterial Artificial Chromosome (BAC) library screening followed by genome walking failed to reconstitute a cluster. The BAC clones containing Hox genes were sequenced, and in no case were other Hox genes found on the same clone. Moreover, the SmHox4 and SmHox8 genes contained single very large introns (>40 kbp) further indicating that the schistosome Hox cluster is highly extended. Localization of the Hox genes to chromosomes using fluorescence in situ hybridization showed that SmHox4 and SmHox8 are on the long arm of chromosome 4, whereas SmHox1 and Smox1 are on chromosome 3. In silico screening of the available genome sequences corroborated results of Southern blotting and BAC library screening that indicate that there are no paralogues of SmHox1, SmHox4, or SmHox8. The schistosome Hox cluster is therefore not duplicated, but is both dispersed and disintegrated in the genome. © The Author 2005. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

Publication metadata

Author(s): Pierce RJ, Wu W, Hirai H, Ivens A, Murphy LD, Noel C, Johnston DA, Artiguenave F, Adams M, Cornette J, Viscogliosi E, Capron M, Balavoine G

Publication type: Article

Publication status: Published

Journal: Molecular Biology and Evolution

Year: 2005

Volume: 22

Issue: 12

Pages: 2491-2503

ISSN (print): 0737-4038

ISSN (electronic): 1537-1719

Publisher: Oxford University Press


DOI: 10.1093/molbev/msi239

PubMed id: 16120809


Altmetrics provided by Altmetric